

Welcome to minicps’s documentation!

Contents:

	User Guide
	Introduction

	Installation
	Requirements

	Install MiniCPS

	Install Optional Packages

	ssh

	IPv6

	API
	Devices

	MiniCPS

	SWaT tutorial
	Prerequisites

	System Overview
	Supply and Storage control

	MiniCPS simulation
	Topology

	Customization

	Contributing
	How to start
	General design principles

	Development sytle

	Required code

	Code conventions

	Protocols

	States

	Testing

	Examples

	Docs

	Tests
	Devices

	Misc
	Links
	Python 2.X and modules

	Mininet

	SDN/Openflow

	SDN platforms

	Network tools

	Cyber-Physical Systems (CPS)

	Ethernet/IP (ENIP)

	Physical Processes

Indices and tables

	Index

	Module Index

	Search Page

User Guide

Introduction

MiniCPS is a lightweight simulator for accurate network traffic in an
industrial control system, with basic support for physical layer interaction.

This page summarizes the basic installation, configuration and testing of
MiniCPS. We provide a tutorial for beginners here: SWaT tutorial. If
you need more information about a specific topic see Misc.

Installation

Requirements

You need to start MiniCPS installation by installing [http://mininet.org/download/] Mininet and its dependencies.

Notice that Mininet can be installed either inside a Virtual Machine (VM)
or on your physical machine.
The official Mininet VM comes without an X-server that is an optional
requirements for MiniCPS (e.g., it can be used to display a pop-up window
with sensor data visualization).

The Install MiniCPS section provides instructions to install minicps
for a user or a developer, and it assumes that you already have installed
mininet.

Install MiniCPS

MiniCPS is can be installed using pip:

sudo pip install minicps

Test the installation downloading one of our examples from
https://github.com/scy-phy/minicps/tree/master/examples and try to run it.

For example, given that you downloaded the examples directory,
then you can cd swat-s1 folder and run:

sudo python run.py

And you should see the following:

*** Ping: testing ping reachability
attacker -> plc1 plc2 plc3
plc1 -> attacker plc2 plc3
plc2 -> attacker plc1 plc3
plc3 -> attacker plc1 plc2
*** Results: 0% dropped (12/12 received)
mininet>

Install Optional Packages

For SDN controller development there are many options,
pox is a good starting point and Mininet’s VM already includes it. If you
want to manually install it type:

cd
git clone https://github.com/noxrepo/pox

MiniCPS pox controller files are tracked in the minicps repo itself.
To symlink them to pox’s dedicated external controller folder (pox/ext)
execute the following:

~/minicps/bin/pox-init.py [-p POX_PATH -m MINICPS_PATH -vv]

Notice that:

	You can increase the verbosity level using either v or -vv

	POX_PATH defaults to ~/pox and MINICPS_PATH defaults to
~/minicps, indeed ~/minicps/bin/init should work for you.

If you want to contribute to the project please take a look at
Contributing.

Configure MiniCPS

ssh

Mininet VM comes with a ssh server starting at boot. Check it using:

ps aux | grep ssh

You should see a /usr/sbin/sshd -D running process.

If you want to redirect X command to your host X-server ssh into mininet VM,
e.g., to display graphs even if your VM doesn’t run an X server,
using the -Y option:

ssh -Y mininet@mininetvm

IPv6

In order to reduce the network traffic you can disable the
Linux ipv6 kernel module. (mininet VM already disables it)

sudo vim /etc/default/grub

Search for GRUB_CMDLINE_LINUX_DEFAULT and prepend to the string
ipv6.disable=1. You should obtain something like this:

GRUB_CMDLINE_LINUX_DEFAULT="ipv6.disable=1 ..."

Where ... is other text that you don’t have to touch.

Then:

sudo update-grub

Then reboot your machine and check it with ifconfig that no
inet6 is listed.

Instruction taken from
here [https://github.com/mininet/mininet/issues/454]

API

Devices

devices module contains:

	get and set physical process’s API methods

	send and receive network layer’s API methods

	the user input validation code

Any device can be initialized with any couple of state and
protocol dictionaries.

	List of supported protocols and identifiers:

	
	
	Devices with no networking capabilities have to set protocol equal

	to None.

	
	Ethernet/IP subset through cpppo, use id enip

	
	Mode 0: client only.

	Mode 1: tcp enip server.

	
	Modbus through pymodbus, use id modbus

	
	Mode 0: client only.

	Mode 1: tcp modbus server.

	List of supported backends:

	
	Sqlite through sqlite3

The consistency of the system should be guaranteed by the
client, e.g., do NOT init two different PLCs referencing to two different
states or speaking two different industrial protocols.

Device subclasses can be specialized overriding their public methods
e.g., PLC pre_loop and main_loop methods.

	
class minicps.devices.Device(name, protocol, state, disk={}, memory={})

	Base class.

	
__init__(name, protocol, state, disk={}, memory={})

	Init a Device object.

	Parameters:	
	name (str) – device name

	protocol (dict) – used to set up the network layer API

	state (dict) – used to set up the physical layer API

	disk (dict) – persistent memory

	memory (dict) – main memory

protocol (when is not None) is a dict containing 3 keys:

	name: addresses a str identifying the protocol name (eg:
enip)

	mode: int identifying the server mode (eg: mode equals
1)

	
	server: if mode equals 0 is empty,

	otherwise it addresses a dict containing the server information
such as its address, and a list of data to serve.

state is a dict containing 2 keys:

	path: full (LInux) path to the database (eg: /tmp/test.sqlite)

	name: table name

Device construction example:

>>> device = Device(
>>> name='dev',
>>> protocol={
>>> 'name': 'enip',
>>> 'mode': 1,
>>> 'server': {
>>> 'address': '10.0.0.1',
>>> 'tags': (('SENSOR1', 1), ('SENSOR2', 1)),
>>> }
>>> state={
>>> 'path': '/path/to/db.sqlite',
>>> 'name': 'table_name',
>>> }
>>>)

	
get(what)

	Get (read) a physical process state value.

	Parameters:	what (tuple) – field[s] identifier[s]

	Returns:	gotten value or TypeError if what is not a tuple

	
receive(what, address, **kwargs)

	Receive (read) a value from another network host.

kwargs dict is used to pass extra key-value pair according to the
used protocol.

	Parameters:	
	what (tuple) – field[s] identifier[s]

	address (str) – ip[:port]

	Returns:	received value or TypeError if what is not a tuple

	
send(what, value, address, **kwargs)

	Send (write) a value to another network host.

kwargs dict is used to pass extra key-value pair according to the
used protocol.

	Parameters:	
	what (tuple) – field[s] identifier[s]

	value – value to be setted

	address (str) – ip[:port]

	Returns:	None or TypeError if what is not a tuple

	
set(what, value)

	Set (write) a physical process state value.

The value to be set (Eg: drive an actuator) is identified by the
what tuple, and it is assumed to be already initialize. Indeed
set is not able to create new physical process values.

	Parameters:	
	what (tuple) – field[s] identifier[s]

	value – value to be setted

	Returns:	setted value or TypeError if what is not a tuple

	
class minicps.devices.HMI(name, protocol, state, disk={}, memory={})

	Human Machine Interface class.

	HMI provides:

	
	state APIs: e.g., get a water level indicator

	network APIs: e.g., monitors a PLC’s tag

	
main_loop(sleep=0.5)

	HMI main loop.

	Parameters:	sleep (float) – second[s] to sleep after each iteration

	
class minicps.devices.PLC(name, protocol, state, disk={}, memory={})

	Programmable Logic Controller class.

	PLC provides:

	
	state APIs: e.g., drive an actuator

	network APIs: e.g., communicate with another Device

	
main_loop(sleep=0.5)

	PLC main loop.

	Parameters:	sleep (float) – second[s] to sleep after each iteration

	
pre_loop(sleep=0.5)

	PLC boot process.

	Parameters:	sleep (float) – second[s] to sleep before returning

	
class minicps.devices.RTU(name, protocol, state, disk={}, memory={})

	RTU class.

	RTU provides:

	
	state APIs: e.g., drive an actuator

	network APIs: e.g., communicate with another Device

	
main_loop(sleep=0.5)

	RTU main loop.

	Parameters:	sleep (float) – second[s] to sleep after each iteration

	
pre_loop(sleep=0.5)

	RTU boot process.

	Parameters:	sleep (float) – second[s] to sleep before returning

	
class minicps.devices.SCADAServer(name, protocol, state, disk={}, memory={})

	SCADAServer class.

	SCADAServer provides:

	
	state APIs: e.g., drive an actuator

	network APIs: e.g., communicate with another Device

	
main_loop(sleep=0.5)

	SCADAServer main loop.

	Parameters:	sleep (float) – second[s] to sleep after each iteration

	
pre_loop(sleep=0.5)

	SCADAServer boot process.

	Parameters:	sleep (float) – second[s] to sleep before returning

	
class minicps.devices.Tank(name, protocol, state, section, level)

	Tank class.

	Tank provides:

	
	state APIs: e.g., set a water level indicator

	
__init__(name, protocol, state, section, level)

	

	Parameters:	
	name (str) – device name

	protocol (dict) – used to set up the network layer API

	state (dict) – used to set up the physical layer API

	section (float) – cross section of the tank in m^2

	level (float) – current level in m

	
main_loop(sleep=0.5)

	Tank main loop.

	Parameters:	sleep (float) – second[s] to sleep after each iteration

	
pre_loop(sleep=0.5)

	Tank pre_loop.

	Parameters:	sleep (float) – second[s] to sleep before returning

MiniCPS

MiniCPS is a container class, you can subclass it with a specialized version
targeted for your CPS.

E.g., MyCPS(MiniCPS) once constructed runs an interactive simulation where
each PLC device also run a webserver and the SCADA runs an FTP server.

	
class minicps.mcps.MiniCPS(name, net)

	Main container used to run the simulation.

	
__init__(name, net)

	MiniCPS initialization steps:

	Parameters:	
	name (str) – CPS name

	net (Mininet) – Mininet object

	net object usually contains reference to:

	
	the topology

	the link shaping

	the CPU allocation

	the [remote] SDN controller

SWaT tutorial

This tutorial shows how to use MiniCPS to simulate a subprocess of a
Water Treatment testbed. In particular, we demonstrate basic controls through
simulated PLCs, the network traffic, and simple physical layer simulation. We
now provide:

	A list of the pre-requisites to run the tutorial

	A brief system overview

	Step-by-step instructions to run and modify the simulation

Prerequisites

This tutorial assumes that the reader has a basic understanding of python
2.x, has familiarly with Linux OS, bash, Mininet
and has a basic understanding of networking tools such
as: wireshark, ifconfig and nmap.

This tutorial will use the following conventions for command syntax:

	command

	is typed inside a terminal (running bash)

	mininet> command

	is typed inside mininet CLI

	C-d

	it means to press and hold Ctrl and then press d.

Before continuing please read the API doc.

System Overview

This tutorial is based on the Secure Water
Treatment (SWaT) testbed, which is used by Singapore
University of Technology and Design (SUTD)’s researcher and students in the
context of Cyber-Physical systems security research.

SWaT’s subprocess are the followings:

	P1: Supply and Storage

	Collect the raw water from the source

	P2: Pre-treatment

	Chemically pre-treat the raw water

	P3: UltraFiltration (UF) and Backwash

	Purify water and periodically clean the backwash filter

	P4: De-Chlorination

	Chemically and/or physically remove excess Chlorine from water

	P5: Reverse Osmosis (RO)

	Purify water, discard RO reject water

	P6: Permeate transfer, cleaning and back-wash

	Storage of permeate (purified) water

Supply and Storage control

The simulation focuses on the first subprocess of the SWaT testbed.

[image: _images/swat-tutorial-subprocess.png]
As you can see from the figure, during normal
operating conditions the water flows into a Raw water tank (T101) passing through
an open motorized valve MV101. A flow level sensor FIT101 monitors the
flow rate providing a measure in m^3/h.
The tank has a water level indicator LIT101 providing a measure in
mm. A pump P101 [1] is able to move the water to the next stage.
In our simulation we assume that the pump is either on or off and that its
flow rate is constant and can instantly change value.

The whole subprocess is controlled by three PLCs (Programmable Logic Controllers).
PLC1 takes the final decisions with the help of PLC2 and PLC3. The
following is a schematic view of subprocess’s control strategy:

	
	PLC1 will first:

	
	Read LIT101

	Compare LIT101 with well defined thresholds

	Take a decision (e.g.: open P101 or close MV101)

	Update its status

Then PLC1 has to communicate (using EtherNet/IP) with PLC2 and PLC3 that
are monitoring subprocess2 and subprocess3.

	
	PLC1 will then:

	
	Ask to PLC2 FIT201’s value

	Compare FIT201 with well defined thresholds

	Take a decision

	Update its status

	Ask to PLC3 LIT301’s value

	Compare LIT301 with well defined thresholds

	Take a decision

	Update its status

Notice that asking to a PLC is different from reading from a sensor,
indeed our simulation separate the two cases using different functions.

	[1]	The real system uses two redundant pumps, one is working and the other
is in stand-by mode.

MiniCPS simulation

Topology

To start the simulation, open up a terminal, navigate into the root
minicps directory, (the one containing a Makefile) and type:

make swat-s1

Now you should see the mininet CLI:

mininet>

Feel free to explore the network topology using mininet‘s built-in
commands such as: nodes, dump, net, links etc.

At this time you should be able to answer questions such as:

	What is the IP address of PLC1?

	What are the (virtual) network interfaces?

	What is the network topology?

If you want to open a shell for a specific device, let’s say plc1
type:

mininet> xterm plc1

Now you can type any bash command from plc1 node, such that ping or
ifconfig.

At this time you should be able to answer questions such as:

	Are there web servers or ftp servers running on some host ?

	Is the file system shared ?

Another convenient way to run bash commands is directly from the mininet prompt,
for example type:

mininet> s1 wireshark

You can exit mininet by pressing C-d or typing:

mininet> exit

You can optionally clean the OS environment typing:

make clean-simulation

Customization

Open a terminal and cd examples/swat-s1/. The files contained in this folder
can be used as a template to implement your Cyber-Physical System simulation.
For example you can copy it in your home folder and start designing your CPS
simulation.

For the rest of the section we will use our SWaT subprocess simulation
example to show how to design, run and configure MiniCPS. Let’s start
describing the various files used for the simulation.

The init.py script can be run once to generate the sqlite database containing
the state information.

The topo.py script contains the mininet SwatTopo(Topo) subclass used to set the
CPS topology and network parameters (e.g., IP, MAC, netmasks).

The run.py script contains the SwatS1CPS(MiniCPS) class that you can
use to customize your simulation. In this example the user has to manually run the
PLC logic scripts and physical process script, for example opening four xterm from the
mininet> prompt and launch the scripts.
You can start every script automatically uncommenting the following lines:

 plc2.cmd(sys.executable + ' plc2.py &')
 plc3.cmd(sys.executable + ' plc3.py &')
 plc1.cmd(sys.executable + ' plc1.py &')
 s1.cmd(sys.executable + ' physical_process.py &')

In this example it is required to start plc2.py and plc3.py
before plc1.py because the latter will start requesting Ethernet/IP
tags from the formers to drive the system.

The utils.py module contains the shared constants and the configuration
dictionaries for each MIniCPS Device subclass. Let’s take as an illustrative
example plc1 configuration dictionaries:

PLC1_ADDR = IP['plc1']
PLC1_TAGS = (
 ('FIT101', 1, 'REAL'),
 ('MV101', 1, 'INT'),
 ('LIT101', 1, 'REAL'),
 ('P101', 1, 'INT'),
 # interlocks does NOT go to the statedb
 ('FIT201', 1, 'REAL'),
 ('MV201', 1, 'INT'),
 ('LIT301', 1, 'REAL'),
)
PLC1_SERVER = {
 'address': PLC1_ADDR,
 'tags': PLC1_TAGS
}
PLC1_PROTOCOL = {
 'name': 'enip',
 'mode': 1,
 'server': PLC1_SERVER
}

The PLC1_PROTOCOL dictionary
allows MiniCPS to use the correct network configuration settings for the
send and receive methods, in this case for plc1
MiniCPS will initialize a cpppo Ethernet/IP servers with the specified
tags.

It is important to understand the mode encoding, mode is expected to be
a non-negative integer and it will set networking mode of the associated
Device.
Use a 1 if you want a device that both is serving enip tags and
it is able to query an enip server, e.g., a PLC device.
Use a 0 if you want a device has only enip client capabilities,
e.g., an HMI device.
In case you want to simulate a Device that has no network capabilites you can
set the protocol dict to None, e.g., a Tank device.

PATH = 'swat_s1_db.sqlite'
NAME = 'swat_s1'

STATE = {
 'name': NAME,
 'path': PATH
}

The STATE dictionary is shared among devices and
allows MiniCPS to use the correct physical layer API for the set and
get methods.

The simulation presents both physical and network interaction and the nice
thing about MiniCPS is that any device can use the same addressing
strategy to interact with the state and to request values through the network.
This example uses the following constants tuples as addresses:

MV101 = ('MV101', 1)
P101 = ('P101', 1)
LIT101 = ('LIT101', 1)
LIT301 = ('LIT301', 3)
FIT101 = ('FIT101', 1)
FIT201 = ('FIT201', 2)

We are using two fields, the first is a str indicating the name of the
tag and the second is an int indicating the plc number. For example:

	plc2 will store an addressable real enip tag using
FIT201_2 = ('FIT201', 2)

	plc1 will store in its enip server an addressable real enip tag using
FIT201_1 = ('FIT201', 1)

If you want to change the initial values of the simulation open
physical_process.py and look at:

 self.set(MV101, 1)
 self.set(P101, 0)
 self.level = self.set(LIT101, 0.800)

If you want to change any of the plcs logics take a look at plc1.py,
plc2.py and plc3.py and remember to set the relevant values in the
utils.py module.

If you manually
run the logic script you can plug-and-play them in any fashion, e.g., you
can test the same plc logics in a scenario where a tank is supposed to
overflow and then stop the physical_process script and run another one where
the tank is supposed to underflow, without stopping the plcs scripts.

The log/ directory is used to store log information about the simulation.

You can clean the simulation environment from minicps root directory using:

make clean-simulation

Contributing

This doc provides information about how to contribute to the MiniCPS
projects.

How to start

General design principles

MiniCPS follows an object-oriented design pattern. It is using python2.x
for compatibility reasons with mininet. We are trying to lower the number
of external dependencies, and eventually move to python3.x.

	Design points:
	separation of concerns (eg: public API vs private APi)

	modularity (eg: different protocols and state backends)

	testability (eg: unit tests and TDD)

	performance (eg: real-time simulation)

	Security points:
	avoid unsafe programming languages

	user input is untrusted and has to be validated (eg: prepared statements)

	safe vs unsafe code separation

	automated static analysis

	Core components:
	minicps module (should be in the PYTHONPATH)

	examples use cases (can be anywhere in the filesystem)

Development sytle

MiniCPS is hosted on Github and encourages canonical submission of
contributions [https://opensource.guide/how-to-contribute/#how-to-submit-a-contribution]
it uses
semantic versioning [http://semver.org/],
nose for test-driven development [https://in.pycon.org/2009/smedia/slides/tdd_with_python.pdf] and
make as a launcher for various tasks.

Required code

Clone the minicps repository:

git clone https://github.com/scy-phy/minicps

Add minicps to the python path, for example using a soft link:

ln -s ~/minicps/minicps /usr/lib/python2.7/minicps

Install the requirements using:

pip install -r ~/minicps/requirements-dev.txt

Run the tests with:

cd ~/minicps
make tests

Code conventions

The project it is based on PEP8 (code) and PEP257 (docstring).

	Naming scheme:

	Private data: prepend _ eg: _method_name or _attribute_name

	Classes: ClassName or CLASSName, method_name and instance_name

	Others: function_name, local_variable_name, GLOBAL_VARIABLE_NAME

	Filenames: foldername, module.py, another_module.py
and module_tests.py

	Test: test_ClassName test_function_name

	Makefile: target-name VARIABLE_NAME

	Makers: TODO, FIXME, XXX, NOTE VIM MARKER {{{
... }}}

	Docs: doc.rst, another-doc.rst and SPHINX_DOC_NAME SOMETHING(for
Sphinx’s literalinclude

Module docstring:

"""
``modulename`` contains:

 - bla

First paragraph.

...

Last paragraph.
"""

Function docstrings:

def my_func():
 """Bla."""

 pass

def my_func():
 """Bla.

 :returns: wow
 """

 pass

Class docstring to document (at least) public methods:

class MyClass(object):

 """Bla."""

 def __init__(self):
 """Bla."""

 pass

Protocols

Compatibility with new (industrial) protocols depends on the availability of
a good open-source library implementing that protocol (eg: pymodbus for
Modbus protocols).

If you want to add a new protocol please look at the minicps/protocols.py
module. Protocol is the base class, and the
[NewProtocolName]Protocol(Protocol) should be your new child class
(inheriting from the Protocol class) containing
the code to manage the new protocol. A good point to start it to take a look
at tests/protocols_tests.py to see how other protocols classes
are unit-tested.

If you want to improve the compatibility of a supported protocol please take
a look at its implementation and unit-testing classes. For example, look at
ModbusProtocol(Protocol) and TestModbusProtocol() if you want to improve
the Modbus protocol support.

States

The same reasoning presented in the Protocols section applies here. The
relevant source code is located in minicps/states.py and
tests/states_tests.py.

Testing

Unit testing is hard to setup properly! Please if you find any inconsistent unit test or
decomposable unit test or you want to add a new one then send a PR.

Examples

Please feel free to send PRs about new use cases that are not already present
in the examples directory.

Docs

All the docs are stored in the docs folder. We are using sphinx to
render the docs and the rst markup language to write them. Some of the
docs are automatically generated from the code and others are written by
hands.

To build you documentation locally use one of the target of the Makefile
present in the docs folder. For example, to build and navigate an html
version of our docs type:

cd docs
make html
firefox _build/html/index.html

Please send a PR if you find any typo, incorrect explanation, etc.

Tests

Devices

Misc

Links

Python 2.X and modules

	python tutorial [https://docs.python.org/2/tutorial/index.html].

	pip [https://pip.pypa.io/en/stable/]

	networkx [http://networkx.github.io/]

	matplotlib [http://matplotlib.org/]

	sqlite3 [https://docs.python.org/2/library/sqlite3.html]

	sphinx [http://sphinx-doc.org/] and
sphinx rtd theme [https://github.com/snide/sphinx_rtd_theme]

	restructured text [http://docutils.sourceforge.net/docs/user/rst/quickstart.html]

Mininet

	walkthrough [http://mininet.org/walkthrough/]

	APIs [https://github.com/mininet/mininet/wiki/Introduction-to-Mininet].

SDN/Openflow

	The Open Networking Foundation (ONF) [https://www.opennetworking.org/]

	ONF Github repo [http://opennetworkingfoundation.github.io/libfluid/index.html]

	SDN Introductory article series [http://thenewstack.io/defining-software-defined-networking-part-1/]

	sdnhub [http://sdnhub.org/]

	OpenVSwitch (OVS) [http://openvswitch.org/]

	M. Casado list [http://yuba.stanford.edu/~casado/of-sw.html]

SDN platforms

	NOX(POX) [http://www.noxrepo.org/]

	POX wiki [https://openflow.stanford.edu/display/ONL/POX+Wiki]

	OpenDaylight [https://www.opendaylight.org/]

Network tools

	Wireshark OpenFlow’s dissector [https://wiki.wireshark.org/OpenFlow]

	nmap [https://nmap.org/]

	ettercap/etterfilter [https://ettercap.github.io/ettercap/]

Cyber-Physical Systems (CPS)

	datasheetarchive [http://www.datasheetarchive.com/]

	ControlLogix products page (Allen-Bradley) [http://ab.rockwellautomation.com/programmable-controllers/controllogix#overview]

Ethernet/IP (ENIP)

	cpppo [https://github.com/pjkundert/cpppo]

	pycomm [https://github.com/ruscito/pycomm]

Physical Processes

	Ultrafiltration [https://en.wikipedia.org/wiki/Ultrafiltration]

	Reverse osmosis [https://en.wikipedia.org/wiki/Reverse_osmosis]

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 minicps	

 	
 	
 minicps.devices	

 	
 	
 minicps.mcps	

Index

 _
 | D
 | G
 | H
 | M
 | P
 | R
 | S
 | T

_

 	
 	__init__() (minicps.devices.Device method)

 	(minicps.devices.Tank method)

 	(minicps.mcps.MiniCPS method)

D

 	
 	Device (class in minicps.devices)

G

 	
 	get() (minicps.devices.Device method)

H

 	
 	HMI (class in minicps.devices)

M

 	
 	main_loop() (minicps.devices.HMI method)

 	(minicps.devices.PLC method)

 	(minicps.devices.RTU method)

 	(minicps.devices.SCADAServer method)

 	(minicps.devices.Tank method)

 	
 	MiniCPS (class in minicps.mcps)

 	minicps.devices (module)

 	minicps.mcps (module)

P

 	
 	PLC (class in minicps.devices)

 	pre_loop() (minicps.devices.PLC method)

 	(minicps.devices.RTU method)

 	(minicps.devices.SCADAServer method)

 	(minicps.devices.Tank method)

R

 	
 	receive() (minicps.devices.Device method)

 	
 	RTU (class in minicps.devices)

S

 	
 	SCADAServer (class in minicps.devices)

 	
 	send() (minicps.devices.Device method)

 	set() (minicps.devices.Device method)

T

 	
 	Tank (class in minicps.devices)

 _static/comment-bright.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-close.png

_static/down.png

_static/ajax-loader.gif

_static/up.png

_images/swat-tutorial-subprocess.png
HISOL
Grid FITL01 MV101
iy T, paormon & &

plcLpy plezpy plc3py
Physical process State DB

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		Welcome to minicps's documentation!

 		User Guide

 		Introduction

 		Installation

 		Requirements

 		Install MiniCPS

 		Install Optional Packages

 		ssh

 		IPv6

 		API

 		Devices

 		MiniCPS

 		SWaT tutorial

 		Prerequisites

 		System Overview

 		Supply and Storage control

 		MiniCPS simulation

 		Topology

 		Customization

 		Contributing

 		How to start

 		General design principles

 		Development sytle

 		Required code

 		Code conventions

 		Protocols

 		States

 		Testing

 		Examples

 		Docs

 		Tests

 		Devices

 		Misc

 		Links

 		Python 2.X and modules

 		Mininet

 		SDN/Openflow

 		SDN platforms

 		Network tools

 		Cyber-Physical Systems (CPS)

 		Ethernet/IP (ENIP)

 		Physical Processes

_static/comment.png

_static/plus.png

